• About

Sacred Cow Chips

Sacred Cow Chips

Tag Archives: Carbon Sink

The Oceans and Global Temperatures

18 Saturday Feb 2023

Posted by Nuetzel in Climate science, Ocean Temperatures

≈ Leave a comment

Tags

Acidification, Alkaline, Anthony WAtts, ARGO Floats, Buffering, Carbon Dioxide, Carbon Sink, Cloud Formation, Cosmic Ray Flux, El Nino, Energy Budget, Evaporation, Geothermal Heat, Greenhouse Gases, Gulf Stream, Heat Storage, Henrik Svensmark, Indian Ocean, Isoprene, Jim Steele, Ocean Circulation, Ocean Temperatures, Paul Homewood, pH Levels, Rud István, Sea Life, Solar Irradiation, Water Vapor, Willis Eschenbach

Despite evidence to the contrary, there’s one thing climate change alarmists seem to consider a clincher. Well… their stylized account has the seas absorbing heat from our warming atmosphere as human activity forces carbon emissions into the air. That notion seems to be reinforced, at least in the popular imagination, by the fact that the sea is a “carbon sink”, but that is a matter of carbon sequestration and not a mechanism of ocean warming. While ocean temperatures have warmed slightly over the past few decades, it is almost entirely coincidental, rather than a result of slightly warmer air temperatures.

Heat and the Hydrosphere

There is no doubt that the oceans store heat very efficiently, but that heat comes primarily from solar radiation and geothermal sources underseas. In fact, water stores heat far more efficiently than the atmosphere. According to Paul Homewood, a given cross section of sea water to a depth of just 2.6 meters is capable of holding as much heat as a column of air of the same width extending from the ocean surface to the outermost layers of the atmosphere! (See here for an earlier reference.) However, that does not imply that the oceans are very effective at drawing heat from warmer air or particularly carbon back-radiation. Both the air and water draw heat from solar radiation, and how much in any given location depends on the Sun’s angle in the sky.

A solid guide is that air temperatures are heavily influenced by water temperatures, but not as much vice versa. When temperatures in the upper layers of the ocean rise from natural forces, including reduced upward circulation from greater depths, evaporation causes this heat to radiate into the atmosphere along with evaporation of water vapor. Homewood notes that El Niño patterns make the influence of the Pacific Ocean waters on climate pretty obvious. The impact of the Gulf Stream on European climates is also instructive.

The Indian Ocean accounted for about half of the sea warming that occurred within the globe’s top 700 meters of waters over the years 2000 – 2019, though the Indian Ocean represents only about 20% of the world’s sea surface. The authors of that research found that the warming was not caused by trends in surface forcing of any kind, including warmer air temperatures. They said the ocean warming:

“… has been driven by significant changes in oceanic fluxes and not by surface forcing. … the ocean has been driving a rapid increase in Indian Ocean heat content.”

This was consistent with an earlier study of global sea temperatures covering the period 1984 – 2006 that found:

“… diminished ocean cooling due to vertical ocean processes … A conclusion is that natural variability, rather than long-term climate change, dominates the SST [sea surface temperature] and heat flux changes over this 23-yr period.”

It’s a Water World

Heat released by the oceans tends to dominate variations in global temperatures. A 2018 study found that evaporative heat transfer to the atmosphere from the oceans was closely associated with variations in air temperatures:

“When the atmosphere gets extra warm it receives more heat from the ocean, when it is extra cool it receives less heat from the ocean, making it clear that the ocean is the driving force behind these variations. …

The changes in solar radiation received at the Earth’s surface are clearly a trigger for these variations in global mean temperature, but the mechanisms by which these changes occur are a bit more complex and depend on the time-scale of the changes.”

Measurement

Willis Eschenbach reviewed a prominent study of ocean temperature changes and noted that the authors’ estimate of total warming of the oceans was quite small:

“… over the last sixty years, the ocean has warmed a little over a tenth of one measly degree … now you can understand why they put it in zettajoules—it’s far more alarming that way.”

Eschenbach goes on to discuss the massive uncertainty underlying measurements of ocean temperatures, particularly below a depth of 2,000 meters, but even well above that depth given the extremely wide spacing of so-called ARGO floats. However, the relative stability of the point estimates over 60 years is noteworthy, not to mention the “cold water” doused on alarmist claims about ocean overheating.

Sun Engine

Ocean warmth begins with energy from the Sun and from the deep interior of the Earth. The force of solar energy is greatest in the tropics, where sunlight is perpendicular to the surface of the Earth and is least dispersed by the thickness of the atmosphere. The sun’s radiative force is smallest in the polar regions, where the angle of its light is acute. As Anthony Watts says:

“All elements of Earth’s weather, storm fronts, hurricanes, the jet stream, and even ocean currents, are driven to redistribute energy from the tropics to the poles.”

Both land and sea absorb heat from the Sun and from volcanic activity, though the heat is moderated by the sea. That moderation is especially impactful in the Southern Hemisphere, which has far less land area, greater exposure of sea surface to the Sun, and about half of the average ocean temperature variation experienced in the North.

Ultimately, the importance of natural sunlight on air and sea temperatures can’t be overemphasized. Henrik Svensmark and some co-authors have estimated that a cosmic ray flux of 15% from a coronal mass ejection leads to a reduction in cloud cover within roughly 9 – 12 days. The ultimate increase in the Earth’s “energy budget” over about a week’s time is about the same size as a doubling of CO2, which certainly puts things in perspective. However, the oceans, and hence cloud cover, moderate the impact of the Sun, with or without the presence of additional greenhouse gases forced by human activity.

Vapors

The importance of evaporation from bodies of water also deserves great emphasis. No one doubts the massive influence of greenhouse gases (GHGs) on the climate. Water vapor accounts for about 90% of GHGs, and it originates predominantly from oceans. Meanwhile, carbon dioxide accounts for less than 4% of GHGs, and it appears that only a small part is from anthropogenic sources (and see here and below).

The impact of changing levels of water vapor dominates GHG levels. They are also a critical input to cloud formation, a phenomenon that climate models are generally ill-equipped to explain. Clouds reflect solar radiation back into space, reducing the Sun’s net contribution to the Earth’s energy budget. On the other hand, clouds can trap heat in the lower layers of the atmosphere. The globe has an average of 60 – 70% cloud cover, and most of that is over the oceans. Increased cloud cover generally leads to declines in temperature.

A 2015 study identified a process through which the sea surface has an unexpectedly large impact on climate. This was from the formation of isoprene, a film on the ocean surface, which leads to more cloud formation. In addition to biological sources, isoprene was found to originate, surprisingly, from the effect of sunlight.

The Big Sink

Man-made emissions of CO2 constitute only about 5% of naturally discharged CO2, which is roughly matched by natural removal. CO2 is absorbed, dissolved, or transformed in a variety of ways on both land and sea, but the oceans collectively represent the world’s largest carbon sink. They hold about 50 times more CO2 than the atmosphere. Carbon is stored in sea water at great depths, and it enhances undersea vegetation just as it does on land. It is sequestered in a variety of sea organisms as calcium carbonate and is locked in sediments as well. A longstanding question is whether there is some limit on the capacity of the oceans and other sinks to store carbon, but apparently the uptake over time has remained roughly constant at just under 50% of all natural and man-made CO2 emissions (also see here). So far, we don’t appear to be approaching any sort of “saturation point”.

One claim about the rising carbon stored undersea is that it will drive down the oceans’ pH levels. In other words, it will lead to “ocean acidification” and harm a variety of marine life. Rud István has ridiculed that term (quite rightly) because slightly less alkaline sea water does not make it “acidic”. More substantively, he notes the huge natural variations in ocean pH levels across different marine environments, the exaggeration inherent in some estimates of pH changes that do not account for physical buffering, and the fact that the impact on many organisms is inconsistent with the presumed harms of reduced pH. In fact, errors in some of the research pointing to those harms has been acknowledged. In addition, the much feared “coral crisis” seems to have been a myth.

Conclusion

The upper layers of the oceans have warmed somewhat over the past 60 years, but the warming had natural causes. Heat transfer from the atmosphere to the hydrosphere is relatively minor compared to the absorption of heat by oceans via solar forcings. It is also minor compared to the transfer of temperature from oceans to surface air. As Jim Steele has explained it:

“Greenhouse longwave energy penetrates only a few microns into the ocean surface and even less into most soils, but the sun’s shortwave energy passes much more deeply into the ocean.”

It’s reasonable to concede that warmer air temperatures via man-made GHGs might be a minor reinforcement to natural sources of ocean warming, or it might slightly moderate ocean cooling. However, measuring that contribution would be difficult against the massive background of natural forcings on ocean temperatures.

Oceans are dominant in terms of heat storage from natural forcings and in terms of carbon sequestration. In fact, the oceans have thoroughly outperformed alarmist projections as a carbon sink. Dire prognostications of the effect of carbon dioxide on marine life have been drastically over-emphasized as well.

Wind and Solar Power: Brittle, Inefficient, and Destructive

03 Thursday Nov 2022

Posted by Nuetzel in Environment, Nuclear power, Renewable Energy, Uncategorized

≈ 1 Comment

Tags

@MartialData1, @Mining_Atoms, B. F. Randall, Baseload Power, Blake Lovewall, Carbon Credits, Carbon Sink, Dispatchable Power, Fossil fuels, Greenwashing, Grid Stability, Intermittency, Land Use, Martian Data, Nuclear power, Plant Life Cycle, Polysilicons, Renewable energy, Solar Power, Turbine Blades, Wind Power, Zero-Carbon

Just how renewable is “renewable” energy, or more specifically solar and wind power? Intermittent though they are, the wind will always blow and the sun will shine (well, half a day with no clouds). So the possibility of harvesting energy from these sources is truly inexhaustible. Obviously, it also takes man-made hardware to extract electric power from sunshine and wind — physical capital— and it is quite costly in several respects, though taxpayer subsidies might make it appear cheaper to investors and (ultimately) users. Man-made hardware is damaged, wears out, malfunctions, or simply fails for all sorts of reasons, and it must be replaced from time to time. Furthermore, man-made hardware such as solar panels, wind turbines, and the expansions to the electric grid needed to bring the power to users requires vast resources and not a little in the way of fossil fuels. The word “renewable” is therefore something of a misnomer when it comes to solar and wind facilities.

Solar Plant

B. F. Randall (@Mining_Atoms) has a Twitter thread on this topic, or actually several threads (see below). The first thing he notes is that solar panels require polysilicon, which not recyclable. Disposal presents severe hazards of its own, and to replace old solar panels, polysilicon must be produced. For that, Randall says you need high-purity silica from quartzite rock, high-purity coking coal, diesel fuel, and large flows of dispatchable (not intermittent) electric power. To get quartzite, you need carbide drilling tools, which are not renewable. You also need to blast rock using ammonium nitrate fuel oil derived from fossil fuels. Then the rock must be crushed and often milled into fine sand, which requires continuous power. The high temperatures required to create silicon are achieved with coking coal, which is also used in iron and steel making, but coking coal is non-renewable. The whole process requires massive amounts of electricity generated with fossil fuels. Randall calls polysilicon production “an electricity beast”.

Greenwashing

The resulting carbon emissions are, in reality, unlikely to be offset by any quantity of carbon credits these firms might purchase, which allow them to claim a “zero footprint”. Blake Lovewall describes the sham in play here:

“The biggest and most common Carbon offset schemes are simply forests. Most of the offerings in Carbon marketplaces are forests, particularly in East Asian, African and South American nations. …

The only value being packaged and sold on these marketplaces is not cutting down the trees. Therefore, by not cutting down a forest, the company is maintaining a ‘Carbon sink’ …. One is paying the landowner for doing nothing. This logic has an acronym, and it is slapped all over these heralded offset projects: REDD. That is a UN scheme called ‘Reduce Emissions from Deforestation and Forest Degradation’. I would re-name it to, ‘Sell off indigenous forests to global investors’.”

Lovewall goes on to explain that these carbon offset investments do not ensure that forests remain pristine by any stretch of the imagination. For one thing, the requirements for managing these “preserves” are often subject to manipulation by investors working with government; as such, the credits are often vehicle for graft. In Indonesia, for example, carbon credited forests have been converted to palm oil plantations without any loss of value to the credits! Lovewall also cites a story about carbon offset investments in Brazil, where the credits provided capital for a massive dam in the middle of the rainforest. This had severe environmental and social consequences for indigenous peoples. It’s also worth noting that planting trees, wherever that might occur under carbon credits, takes many years to become a real carbon sink.

While I can’t endorse all of Lovewall’s points of view, he makes a strong case that carbon credits are a huge fraud. They do little to offset carbon generated by entities that purchase them as offsets. Again, the credits are very popular with the manufacturers and miners who participate in the fabrication of physical capital for renewable energy installations who wish to “greenwash” their activities.

Wind Plant

Randall discusses the non-renewability of wind turbines in a separate thread. Turbine blades, he writes, are made from epoxy resins, balsa wood, and thermoplastics. They wear out, along with gears and other internal parts, and must be replaced. Land disposal is safe and cheap, but recycling is costly and requires even greater energy input than the use of virgin feedstocks. Randall’s thread on turbines raised some hackles among wind energy defenders and even a few detractors, and Randall might have overstated his case in one instance, but the main thrust of his argument is irrefutable: it’s very costly to recycle these components into other usable products. Entrepreneurs are still trying to work out processes for doing so. It’s not clear that recycling the blades into other products is more efficient than sending them to landfills, as the recycling processes are resource intensive.

But even then, the turbines must be replaced. Recycling the old blades into crates and flooring and what have you, and producing new wind turbines, requires lots of power. And as Randall says, replacement turbines require huge ongoing quantities of zinc, copper, cement, and fossil fuel feedstocks.

The Non-Renewability of Plant

It shouldn’t be too surprising that renewable power machinery is not “renewable” in any sense, despite the best efforts of advocates to convince us of their ecological neutrality. Furthermore, the idea that the production of this machinery will be “zero carbon” any time in the foreseeable future is absurd. In that respect, this is about like the ridiculous claim that electric vehicles (EVs) are “zero emission”, or the fallacy that we can achieve a zero carbon world based on renewable power.

It’s time the public came to grips with the reality that our heavy investments in renewables are not “renewable” in the ecological sense. Those investments, and reinvestments, merely buy us what Randall calls “garbage energy”, by which he means that it cannot be relied upon. Burning garbage to create steam is actually a more reliable power source.

Highly Variable With Low Utilization

Randall links to information provided by Martian Data (@MartianManiac1) on Europe’s wind energy generation as of September 22, 2022 (see the tweet for Martian Data’s sources):

“Hourly wind generation in Europe for past 6 months:
Max: 122GW
Min: 10.2GW
Mean: 41.0
Installed capacity: ~236GW
”

That’s a whopping 17.4% utilization factor! That’s pathetic, and it means the effective cost is quintuple the value at nameplate capacity. Take a look at this chart comparing the levels and variations in European power demand, nuclear generation, and wind generation over the six months ending September 22nd (if you have trouble zooming in here, try going to the thread):

The various colors represent different countries. Here’s a larger view of the wind component:

A stable power grid cannot be built upon this kind of intermittency. Here is another comparison that includes solar power. This chart is daily covering 2021 through about May 26, 2022.

As for solar capacity utilization, it too is unimpressive. Here is Martian Data’s note on this point, followed by a chart of solar generation over the course of a few days in June:

“so ~15% solar capacity is whole year average. ~5% winter ~20% summer. And solar is brief in summer too…, it misses both both morning and evening peaks in demand.”

Like wind, the intermittency of solar power makes it an impractical substitute for traditional power sources. Check out Martian Data’s Twitter feed for updates and charts from other parts of the world.

Nuclear Efficiency

Nuclear power generation is an excellent source of baseload power. It is dispatchable and zero carbon except at plant construction. It also has an excellent safety record, and newer, modular reactor technologies are safer yet. It is cheaper in terms of generating capacity and it is more flexible than renewables. In fact, in terms of the resource costs of nuclear power vs. renewables over plant cycles, it’s not even close. Here’s a chart recently posted by Randall showing input quantities per megawatt hour produced over the expected life of each kind of power facility (different power sources are labeled at bottom, where PV = photovoltaic (solar)):

In fairness, I’m not completely satisfied with these comparisons. They should be stated in terms of current dollar costs, which would neutralize differences in input densities and reflect relative scarcities. Nevertheless, the differences in the chart are stark. Nuclear produces cheap, reliable power.

The Real Dirt

Solar and wind power are low utilization power sources and they are intermittent. Heavy reliance on these sources creates an extremely brittle power grid. Also, we should be mindful of the vast environmental degradation caused by the mining of minerals needed to produce solar panels and wind turbines, including their inevitable replacements, not to mention the massive land use requirements of wind and solar power. Also disturbing is the hazardous dumping of old solar panels from the “first world” now taking place in less developed countries. These so-called clean-energy sources are anything but clean or efficient.

Follow Sacred Cow Chips on WordPress.com

Recent Posts

  • Tariffs, Content Quotas, and What Passes for Patriotism
  • Carbon Credits and Green Bonds Are Largely Fake
  • The Wasteful Nature of Recycling Mandates
  • Broken Windows: Destroying Wealth To Create Green Jobs
  • The Oceans and Global Temperatures

Archives

  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • July 2016
  • June 2016
  • May 2016
  • April 2016
  • March 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • July 2015
  • June 2015
  • May 2015
  • April 2015
  • March 2015
  • February 2015
  • January 2015
  • December 2014
  • November 2014
  • October 2014
  • September 2014
  • August 2014
  • July 2014
  • June 2014
  • May 2014
  • April 2014
  • March 2014

Blogs I Follow

  • Ominous The Spirit
  • Passive Income Kickstart
  • OnlyFinance.net
  • TLC Cholesterol
  • Nintil
  • kendunning.net
  • DCWhispers.com
  • Hoong-Wai in the UK
  • Marginal REVOLUTION
  • Stlouis
  • Watts Up With That?
  • Aussie Nationalist Blog
  • American Elephants
  • The View from Alexandria
  • The Gymnasium
  • A Force for Good
  • Notes On Liberty
  • troymo
  • SUNDAY BLOG Stephanie Sievers
  • Miss Lou Acquiring Lore
  • Your Well Wisher Program
  • Objectivism In Depth
  • RobotEnomics
  • Orderstatistic
  • Paradigm Library

Blog at WordPress.com.

Ominous The Spirit

Ominous The Spirit is an artist that makes music, paints, and creates photography. He donates 100% of profits to charity.

Passive Income Kickstart

OnlyFinance.net

TLC Cholesterol

Nintil

To estimate, compare, distinguish, discuss, and trace to its principal sources everything

kendunning.net

The future is ours to create.

DCWhispers.com

Hoong-Wai in the UK

A Commonwealth immigrant's perspective on the UK's public arena.

Marginal REVOLUTION

Small Steps Toward A Much Better World

Stlouis

Watts Up With That?

The world's most viewed site on global warming and climate change

Aussie Nationalist Blog

Commentary from a Paleoconservative and Nationalist perspective

American Elephants

Defending Life, Liberty and the Pursuit of Happiness

The View from Alexandria

In advanced civilizations the period loosely called Alexandrian is usually associated with flexible morals, perfunctory religion, populist standards and cosmopolitan tastes, feminism, exotic cults, and the rapid turnover of high and low fads---in short, a falling away (which is all that decadence means) from the strictness of traditional rules, embodied in character and inforced from within. -- Jacques Barzun

The Gymnasium

A place for reason, politics, economics, and faith steeped in the classical liberal tradition

A Force for Good

How economics, morality, and markets combine

Notes On Liberty

Spontaneous thoughts on a humble creed

troymo

SUNDAY BLOG Stephanie Sievers

Escaping the everyday life with photographs from my travels

Miss Lou Acquiring Lore

Gallery of Life...

Your Well Wisher Program

Attempt to solve commonly known problems…

Objectivism In Depth

Exploring Ayn Rand's revolutionary philosophy.

RobotEnomics

(A)n (I)ntelligent Future

Orderstatistic

Economics, chess and anything else on my mind.

Paradigm Library

OODA Looping

  • Follow Following
    • Sacred Cow Chips
    • Join 121 other followers
    • Already have a WordPress.com account? Log in now.
    • Sacred Cow Chips
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...